Статистика
Всего в нашей базе более 4 327 664 вопросов и 6 445 979 ответов!

Докажите что сумма n нечётных последовательных чисел делится на n помогите завтра сдавать

5-9 класс

Trufanova9882 09 апр. 2017 г., 10:09:51 (7 лет назад)
Рейтинг
+ 0 -
0 Жалоба
+ 0 -
Pupok201413166
09 апр. 2017 г., 10:41:46 (7 лет назад)

Сумма n нечетных последовательных чисел это арифмитеческая прогрессия с первым членом 1 и разностью 2

a_1=1; a_n=2n-1; d=2;\\ S_n=\frac{a_1+a_n}{2}*n;\\ S_n=\frac{1+2n-1}{2}*n=n^2

так как n^2 делится на n, то тем самым мы доказали,что   сумма n нечётных последовательных чисел делится на n. Доказано

 

ОТКУДА МНЕ МОЖЕТ БЫТЬ ИЗВЕСТНО В КАКОМ КЛАССЕ УЧИШЬСЯ, ЕСЛИ ХАРАКТЕР ЗАДАЧИ ОЛИМПИАДНЫЙ?

 

вариант 2 (вывод формулы "вручную")

S=1+3+5+7+..+(2n-1)

S=(2n-1)+(2n-3)+...+7+5+3+1;

2S=1+3+5+7+..+(2n-1)+(2n-1)+(2n-3)+...+7+5+3+1=(1+(2n-1))+(3+(2n-3))+...=n скобок в каждой сумма равна числу 2n=n*2n=2n^2 (два єн в квадрате)

S=n^2

так как n^2 делится на n, то тем самым мы доказали,что   сумма n нечётных последовательных чисел делится на n. Доказано

 

вариант 3 (с использованием метода математической индукции)

Гипотеза. Ищем формулу

2*1-1=1=1=1^2

2*1-1+2*2-1=1+3=4=2^2

2*1-1+2*2-1+2*2-1=1+3+5=9=3^2

напрашивается формула 1+3+5+...+(2n-1)=n^2

Докажем методом математической индукции, что єто ИСТИННО.

База индукции n=1: 1=1^2 верно

Гипотеза индукции. Пусть при n=k: 1+3+5+...+(2k-1)=k^2

Индукционный переход. Докажем, что тогда утверждение истинно и при n=k+1

1+3+5+...+(2k-1)+(2k+1)=используем гипотезу=k^2+(2k+1)=используем формулу квадрата двучлена=(k+1)^2, что и требовалось доказать

По принципу математической индукции 1+3+5+...+(2n-1)=n^2.

так как n^2 делится на n, то тем самым мы доказали,что   сумма n нечётных последовательных чисел делится на n. Доказано

 

вариант4 (геометрический)

возьмем квадрат размерами 1*1 его площадь 1

возьмем достроем его 3 квадратами 1*1(их площадь 3*1*1=3), получится большой квадрат 2*2

(1+3=2*2)

возьмем достроим новый квадрат 5 квадратами 1*1(их площадь 5*1*1=5), получится большой квадрат 3*3

(1+3+5=)

и т.д.сумма площадей "маленьких n квадратов" равна площади большого квадрата n*n

1+3+5+...+(2n-1)=n^2

видим ,что так как n^2 делится на n, то тем самым мы доказали,что   сумма n нечётных последовательных чисел делится на n. Доказано

 

вариант 5, разобьем сумму на подсуммы первый с последним, второй с предоследним, и т.д., если количевство нечетных чисел нечетно среднее слагаемое само по себе

1+2n-1=2n делится на n

3+2n-3=2n делится на n

...

n/2-1+n/2+1=n делится на n

и ("особое слагаемое")

n делится делится на n

Каждое из слагаемых делится на n, значит и вся сумма делится на n

Ответить

Другие вопросы из категории

Читайте также

Докажите, что разность кубов двух последовательных натуральных чисел не делится на 3. и вот еще одна задача...

Докажите, что сумма кубов трех последовательных натуральных чисел делится на 3. помогите плиз...

№ 1 Докажите,что: а) произведение двухДокажите,что:а) произведение двух идущих подряд натуральных чисел делится на б)произведение трех идущих

подряд натуральных чисел делится на 3 и 6
в) произведение четырех идущих подряд натуральных чисел делится на 4,12 и 24
г) произведение пяти идущих подряд натуральных чисел делится на 5,20 и 120

1. упростите 5(a + b ) - ( 5 a + b ) - ( b - a) , а потом решите при a = 1.3 , b = - 0.5

2. докажите , что сумма 34 * 85 + 34 * 36 делится на 11
3. найдите сумму всех целых чисел от -105 до 107 .
один хотя-бы из пунктов пожалуйста .

Помогите плиз

Очень туплю
ДОКАЖИТЕ, ЧТО СУММА ПРОИЗВЕДЕНИЯ 4 ПОСЛЕДОВАТЕЛЬНЫХ ЧИСЕЛ И ЕДИНИЦЫ, ЕСТЬ КВАДРАТ НАТУРАЛЬНОГО.



Вы находитесь на странице вопроса "Докажите что сумма n нечётных последовательных чисел делится на n помогите завтра сдавать", категории "алгебра". Данный вопрос относится к разделу "5-9" классов. Здесь вы сможете получить ответ, а также обсудить вопрос с посетителями сайта. Автоматический умный поиск поможет найти похожие вопросы в категории "алгебра". Если ваш вопрос отличается или ответы не подходят, вы можете задать новый вопрос, воспользовавшись кнопкой в верхней части сайта.