Статистика
Всего в нашей базе более 4 326 249 вопросов и 6 444 443 ответов!

Решите систему уравнения x-y=1 x²+2y=33

5-9 класс

Flot 31 июля 2013 г., 1:22:09 (6 лет назад)
Рейтинг
+ 0 -
0 Жалоба
+ 0 -
Sashanasonov0
31 июля 2013 г., 4:05:28 (6 лет назад)

Переносим из одной части уравнений в другую и подставляем во второе
(1+y)^2+2y=33
1+y^2+2y-33=0
y^2+2y-32=0
Теперь пляшем через дискриминант :
вот подставляй значения в формулу:
b^2-4*ac
и потом полученный корень подставляй сюды y1,2=-b+-корень из Д/2а

Ответить

Читайте также

1)решите систему уравнений графическим методом : 3y-2x=0 y=-3x+11 2) решите систему уравнений методом подстановки :

-x+2y=4

7x-3y=5

3) Решите систему уравнений методом алгебраического сложения :

3x-2y=64

3x+7y=-8

1) решите систему уравнений x-3y=7

xy=-2
2)решите систему уравнений x+2y=7
xy=6
3) решите систему уравнений x+y=7
x*y=6
помогите пожалуйста очень срочно нужно

Решите систему уравнений методом подстановки

{4x-y=11
{6x-2y=13
Решите систему уравнений методом алгебраического сложения
{5x+11y=8
{10x-7y=74
Решите систему уравнений графически
{y=7x
{3x+y=0

Системы уравнений второй степени решите систему уравнений а) x^2 + y^2 = 5 б) x^2 -8xy + 16y^2 = 25 xy = 2

4y^2 - xy = 5

в) 2x^2 + 3xy + y^2 = 0 г) x^2 - 3xy + y^2 = -1

x^2 - xy - y^2 = 4 8y^2 - 3xy = 2

Системы уравнений первой и второй степени

Решите систему уравнений

а) y = 2x - 5 б) y = x^2 - 4x = -5 в) xy - 2y - 4x = -5

x^2 + y^2 = 25 2x + y = 4 y - 3x = -2

Пожалуйста срочно помогите!!! 1) Решите систему уравнений методом подстановки:

x-y=1
xy=6
2) Решите систему уравнений методом подстановки:
х в квадрате минус 3у в квадрате равно 1
х минус 2y равно 1
3) Решите систему уравнений методом алгебраического сложения:
x в квадрате + 2у в квадрате =36
3х в квадрате - 2у в квадрате =-20. Срочно!!!



Вы находитесь на странице вопроса "Решите систему уравнения x-y=1 x²+2y=33", категории "алгебра". Данный вопрос относится к разделу "5-9" классов. Здесь вы сможете получить ответ, а также обсудить вопрос с посетителями сайта. Автоматический умный поиск поможет найти похожие вопросы в категории "алгебра". Если ваш вопрос отличается или ответы не подходят, вы можете задать новый вопрос, воспользовавшись кнопкой в верхней части сайта.